Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
Front Neurosci ; 18: 1372297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572146

RESUMO

Introduction: The study of the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular -amyloid (A) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. Methods: The humanized APPNL-G-F knock-in mouse line was crossed to the PS19 MAPTP301S, over-expression mouse line to create the dual APPNL-G-F/PS19 MAPTP301S line. The resulting pathologies were characterized by immunochemical methods and PCR. Results: We now report on a double transgenic APPNL-G-F/PS19 MAPTP301S mouse that at 6 months of age exhibits robust A plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of A pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. MAPT pathology neither changed levels of amyloid precursor protein nor potentiated A accumulation. Interestingly, study of immunofluorescence in cleared brains indicates that microglial inflammation was generally stronger in the hippocampus, dentate gyrus and entorhinal cortex, which are regions with predominant MAPT pathology. The APPNL-G-F/MAPTP301S mouse model also showed strong accumulation of N6-methyladenosine (m6A), which was recently shown to be elevated in the AD brain. m6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m6A from mRNA, respectively. Discussion: Our understanding of the pathophysiology of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular -amyloid (A) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. The APPNL-G-F/MAPTP301S mouse recapitulates many features of AD pathology beginning at 6 months of aging, and thus represents a useful new mouse model for the field.

2.
ACS Chem Neurosci ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652895

RESUMO

Amyloid plaques composed of fibrils of misfolded Aß peptides are pathological hallmarks of Alzheimer's disease (AD). Aß fibrils are polymorphic in their tertiary and quaternary molecular structures. This structural polymorphism may carry different pathologic potencies and can putatively contribute to clinical phenotypes of AD. Therefore, mapping of structural polymorphism of Aß fibrils and structural evolution over time is valuable to understanding disease mechanisms. Here, we investigated how Aß fibril structures in situ differ in Aß plaque of different mouse models expressing familial mutations in the AßPP gene. We imaged frozen brains with a combination of conformation-sensitive luminescent conjugated oligothiophene (LCO) ligands and Aß-specific antibodies. LCO fluorescence mapping revealed that mouse models APP23, APPPS1, and AppNL-F have different fibril structures within Aß-amyloid plaques depending on the AßPP-processing genotype. Co-staining with Aß-specific antibodies showed that individual plaques from APP23 mice expressing AßPP Swedish mutation have two distinct fibril polymorph regions of core and corona. The plaque core is predominantly composed of compact Aß40 fibrils, and the corona region is dominated by diffusely packed Aß40 fibrils. Conversely, the AßPP knock-in mouse AppNL-F, expressing the AßPP Iberian mutation along with Swedish mutation has tiny, cored plaques consisting mainly of compact Aß42 fibrils, vastly different from APP23 even at elevated age up to 21 months. Age-dependent polymorph rearrangement of plaque cores observed for APP23 and APPPS1 mice >12 months, appears strongly promoted by Aß40 and was hence minuscule in AppNL-F. These structural studies of amyloid plaques in situ can map disease-relevant fibril polymorph distributions to guide the design of diagnostic and therapeutic molecules.

3.
Neurobiol Aging ; 139: 20-29, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38583392

RESUMO

Brazilian green propolis (propolis) is a chemically complex resinous substance that is a potentially viable therapeutic agent for Alzheimer's disease. Herein, propolis induced a transient increase in intracellular Ca2+ concentration ([Ca2+]i) in Neuro-2A cells; moreover, propolis-induced [Ca2+]i elevations were suppressed prior to 24-h pretreatment with amyloid-ß. To reveal the effect of [Ca2+]i elevation on impaired cognition, we performed memory-related behavioral tasks in APP-KI mice relative to WT mice at 4 and 12 months of age. Propolis, at 300-1000 mg/kg/d for 8 wk, significantly ameliorated cognitive deficits in APP-KI mice at 4 months, but not at 12 months of age. Consistent with behavioral observations, injured hippocampal long-term potentiation was markedly ameliorated in APP-KI mice at 4 months of age following repeated propolis administration. In addition, repeated administration of propolis significantly activated intracellular calcium signaling pathway in the CA1 region of APP-KI mice. These results suggest a preventive effect of propolis on cognitive decline through the activation of intracellular calcium signaling pathways in CA1 region of AD mice model.

4.
Front Aging Neurosci ; 16: 1361847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469162

RESUMO

Introduction: Alzheimer's disease (AD), the most common neurodegenerative disease, is characterized by accumulated amyloid-ß (Aß) plaques, aggregated phosphorylated tau protein, gliosis-associated neuroinflammation, synaptic dysfunction, and cognitive impairment. Many cohort studies indicate that tooth loss is a risk factor for AD. The detailed mechanisms underlying the association between AD and tooth loss, however, are not yet fully understood. Methods: We explored the involvement of early tooth loss in the neuropathogenesis of the adult AppNL-G-F mouse AD model. The maxillary molars were extracted bilaterally in 1-month-old male mice soon after tooth eruption. Results: Plasma corticosterone levels were increased and spatial learning memory was impaired in these mice at 6 months of age. The cerebral cortex and hippocampus of AD mice with extracted teeth showed an increased accumulation of Aß plaques and phosphorylated tau proteins, and increased secretion of the proinflammatory cytokines, including interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α), accompanied by an increased number of microglia and astrocytes, and decreased synaptophysin expression. AD mice with extracted teeth also had a shorter lifespan than the control mice. Discussion: These findings revealed that long-term tooth loss is a chronic stressor, activating the recruitment of microglia and astrocytes; exacerbating neuroinflammation, Aß deposition, phosphorylated tau accumulation, and synaptic dysfunction; and leading to spatial learning and memory impairments in AD model mice.

5.
J Oral Biosci ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38521152

RESUMO

OBJECTIVES: Many patients with Alzheimer's disease experience behavioral and psychological symptoms of dementia (BPSD), which significantly affect their quality of life. It is known that 5-Hydroxytryptamine (5-HT) plays a crucial role in the development of BPSD. However, the relationship between tooth loss and Alzheimer's disease symptoms, particularly aggression, has remained unexplored. Although nutritional status is known to influence the progression of dementia, the specific effect of tooth loss on peripheral symptoms, notably aggression, is not well understood. METHODS: In our study, we conducted maxillary molar extractions in aged C57BL6J and AppNL-G-F mice and observed their condition over a 3-month period. During this time, we documented significant behavioral and genetic differences between mice in the control groups and mice that underwent tooth extraction. Notably, mice that underwent tooth extraction exhibited a considerable decline in cognitive function and an increase in aggression at 3 months after tooth extraction compared with the control groups (C57BL6J or AppNL-G-Fmice). RESULTS: Our findings suggest that molar loss may lead to reduced 5-HT levels in the hippocampus, possibly mediated by the trigeminal nerve, contributing to the development of aggression and BPSD in Alzheimer's disease. CONCLUSION: This study sheds light on the intricate relationships between oral health, 5-HT, and Alzheimer's disease symptoms, offering valuable insights into potential therapeutic avenues for managing BPSD in patients with dementia.

6.
Neurosci Res ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38508957

RESUMO

Sleep apnea is regarded as an important risk factor in the pathogenesis of Alzheimer disease (AD). Chronic intermittent hypoxia treatment (IHT) given during the sleep period of the circadian cycle in experimental animals is a well-established sleep apnea model. Here we report that transient IHT for 4 days on AD model mice causes Aß overproduction 2 months after IHT presumably via upregulation of synaptic BACE1, side-by-side with tau hyperphosphorylation. These results suggest that even transient IHT may be sufficient to cause long-lasting changes in the molecules measured as AD biomarkers in the brain.

7.
J Neurochem ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372586

RESUMO

Lipids play crucial roles in the susceptibility and brain cellular responses to Alzheimer's disease (AD) and are increasingly considered potential soluble biomarkers in cerebrospinal fluid (CSF) and plasma. To delineate the pathological correlations of distinct lipid species, we conducted a comprehensive characterization of both spatially localized and global differences in brain lipid composition in AppNL-G-F mice with spatial and bulk mass spectrometry lipidomic profiling, using human amyloid-expressing (h-Aß) and WT mouse brains controls. We observed age-dependent increases in lysophospholipids, bis(monoacylglycerol) phosphates, and phosphatidylglycerols around Aß plaques in AppNL-G-F mice. Immunohistology-based co-localization identified associations between focal pro-inflammatory lipids, glial activation, and autophagic flux disruption. Likewise, in human donors with varying Braak stages, similar studies of cortical sections revealed co-expression of lysophospholipids and ceramides around Aß plaques in AD (Braak stage V/VI) but not in earlier Braak stage controls. Our findings in mice provide evidence of temporally and spatially heterogeneous differences in lipid composition as local and global Aß-related pathologies evolve. Observing similar lipidomic changes associated with pathological Aß plaques in human AD tissue provides a foundation for understanding differences in CSF lipids with reported clinical stage or disease severity.

8.
J Neuroinflammation ; 21(1): 55, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383481

RESUMO

BACKGROUND: Neuroinflammation substantially contributes to the pathology of Alzheimer's disease (AD), the most common form of dementia. Studies have reported that nuclear factor erythroid 2-related factor 2 (Nrf2) attenuates neuroinflammation in the mouse models of neurodegenerative diseases, however, the detailed mechanism remains unclear. METHODS: The effects of dimethyl fumarate (DMF), a clinically used drug to activate the Nrf2 pathway, on neuroinflammation were analyzed in primary astrocytes and AppNL-G-F (App-KI) mice. The cognitive function and behavior of DMF-administrated App-KI mice were evaluated. For the gene expression analysis, microglia and astrocytes were directly isolated from the mouse cerebral cortex by magnetic-activated cell sorting, followed by quantitative PCR. RESULTS: DMF treatment activated some Nrf2 target genes and inhibited the expression of proinflammatory markers in primary astrocytes. Moreover, chronic oral administration of DMF attenuated neuroinflammation, particularly in astrocytes, and reversed cognitive dysfunction presumably by activating the Nrf2-dependent pathway in App-KI mice. Furthermore, DMF administration inhibited the expression of STAT3/C3 and C3 receptor in astrocytes and microglia isolated from App-KI mice, respectively, suggesting that the astrocyte-microglia crosstalk is involved in neuroinflammation in mice with AD. CONCLUSION: The activation of astrocytic Nrf2 signaling confers neuroprotection in mice with AD by controlling neuroinflammation, particularly by regulating astrocytic C3-STAT3 signaling. Furthermore, our study has implications for the repositioning of DMF as a drug for AD treatment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Animais , Doença de Alzheimer/complicações , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Camundongos Transgênicos , Doenças Neuroinflamatórias , Fator 2 Relacionado a NF-E2/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças
9.
Alzheimers Dement ; 20(2): 995-1012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846816

RESUMO

INTRODUCTION: About two-thirds of Alzheimer's Disease (AD) patients are women, who exhibit more severe pathology and cognitive decline than men. Whether biological sex causally modulates the relationship between cholinergic signaling and amyloid pathology remains unknown. METHODS: We quantified amyloid beta (Aß) in male and female App-mutant mice with either decreased or increased cholinergic tone and examined the impact of ovariectomy and estradiol replacement in this relationship. We also investigated longitudinal changes in basal forebrain (cholinergic function) and Aß in elderly individuals. RESULTS: We show a causal relationship between cholinergic tone and amyloid pathology in males and ovariectomized female mice, which is decoupled in ovary-intact and ovariectomized females receiving estradiol. In elderly humans, cholinergic loss exacerbates Aß. DISCUSSION: Our findings emphasize the importance of reflecting human menopause in mouse models. They also support a role for therapies targeting estradiol and cholinergic signaling to reduce Aß. HIGHLIGHTS: Cholinergic tone regulates amyloid beta (Aß) pathology in males and ovariectomized female mice. Estradiol uncouples the relationship between cholinergic tone and Aß. In elderly humans, cholinergic loss correlates with increased Aß in both sexes.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Humanos , Feminino , Masculino , Animais , Idoso , Peptídeos beta-Amiloides , Doença de Alzheimer/patologia , Estradiol , Colinérgicos , Precursor de Proteína beta-Amiloide , Camundongos Transgênicos , Modelos Animais de Doenças
10.
Elife ; 122023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085657

RESUMO

Microglial endolysosomal (dys)function is strongly implicated in neurodegenerative disease. Transcriptomic studies show that a microglial state characterised by a set of genes involved in endolysosomal function is induced in both mouse Alzheimer's disease (AD) models and human AD brain, and that the emergence of this state is emphasised in females. Cst7 (encoding cystatin F) is among the most highly upregulated genes in these microglia. However, despite such striking and robust upregulation, the function of Cst7 in neurodegenerative disease is not understood. Here, we crossed Cst7-/- mice with the AppNL-G-F mouse to test the role of Cst7 in a model of amyloid-driven AD. Surprisingly, we found that Cst7 plays a sexually dimorphic role regulating microglia in this model. In females, Cst7-/-AppNL-G-F microglia had greater endolysosomal gene expression, lysosomal burden, and amyloid beta (Aß) burden in vivo and were more phagocytic in vitro. However, in males, Cst7-/-AppNL-G-F microglia were less inflammatory and had a reduction in lysosomal burden but had no change in Aß burden. Overall, our study reveals functional roles for one of the most commonly upregulated genes in microglia across disease models, and the sex-specific profiles of Cst7-/--altered microglial disease phenotypes. More broadly, the findings raise important implications for AD including crucial questions on sexual dimorphism in neurodegenerative disease and the interplay between endolysosomal and inflammatory pathways in AD pathology.


Assuntos
Doença de Alzheimer , Cistatinas , Doenças Neurodegenerativas , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Cistatinas/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/metabolismo , Doenças Neurodegenerativas/patologia
11.
Front Aging Neurosci ; 15: 1265151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842124

RESUMO

Tau is a microtubule-associated protein with a diverse functional repertoire linked to neurodegenerative disease. Recently, a human tau knock-in (MAPT KI) mouse was developed that may overcome many limitations associated with current animal models used to study tau. In MAPT KI mice, the entire murine Mapt gene was replaced with the human MAPT gene under control of the endogenous Mapt promoter. This model represents an ideal in vivo platform to study the function and dysfunction of human tau protein. Accordingly, a detailed understanding of the effects MAPT KI has on structure and function of the CNS is warranted. Here, we provide a detailed behavioral and neuropathological assessment of MAPT KI mice. We compared MAPT KI to wild-type (WT) C57BL/6j mice in behavioral assessments of anxiety, attention, working memory, spatial memory, and motor performance from 6 to 24 months (m) of age. Using immunohistological and biochemical assays, we quantified markers of glia (microglia, astrocytes and oligodendrocytes), synaptic integrity, neuronal integrity and the cytoskeleton. Finally, we quantified levels of total tau, tau isoforms, tau phosphorylation, and tau conformations. MAPT KI mice show normal cognitive and locomotor behavior at all ages, and resilience to mild age-associated locomotor deficits observed in WT mice. Markers of neuronal and synaptic integrity are unchanged in MAPT KI mice with advancing age. Glial markers are largely unchanged in MAPT KI mice, but glial fibrillary acidic protein is increased in the hippocampus of WT and MAPT KI mice at 24 m. MAPT KI mice express all 6 human tau isoforms and levels of tau remain stable throughout adulthood. Hippocampal tau in MAPT KI and WT mice is phosphorylated at serine 396/404 (PHF1) and murine tau in WT animals displays more PHF1 phosphorylation at 6 and 12 m. Lastly, we extended previous reports showing that MAPT KI mice do not display overt pathology. No evidence of other tau phosphorylation residues (AT8, pS422) or abnormal conformations (TNT2 or TOC1) associated with pathogenic tau were detected. The lack of overt pathological changes in MAPT KI mice make this an ideal platform for future investigations into the function and dysfunction of tau protein in vivo.

12.
Aging Cell ; 22(11): e13994, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37822109

RESUMO

Although insulin resistance increases the risk of Alzheimer's disease (AD), the mechanisms remain unclear, partly because no animal model exhibits the insulin-resistant phenotype without persistent hyperglycemia. Here we established an AD model with whole-body insulin resistance without persistent hyperglycemia (APP/IR-dKI mice) by crossbreeding constitutive knock-in mice with P1195L-mutated insulin receptor (IR-KI mice) and those with mutated amyloid precursor protein (AppNL-G-F mice: APP-KI mice). APP/IR-dKI mice exhibited cognitive impairment at an earlier age than APP-KI mice. Since cholinergic dysfunction is a major characteristic of AD, pharmacological interventions on the cholinergic system were performed to investigate the mechanism. Antagonism to a nicotinic acetylcholine receptor α7 (nAChRα7) suppressed cognitive function and cortical blood flow (CBF) response to cholinergic-regulated peripheral stimulation in APP-KI mice but not APP/IR-dKI mice. Cortical expression of Chrna7, encoding nAChRα7, was downregulated in APP/IR-dKI mice compared with APP-KI. Amyloid ß burden did not differ between APP-KI and APP/IR-dKI mice. Therefore, insulin resistance, not persistent hyperglycemia, induces the earlier onset of cognitive dysfunction and CBF deregulation mediated by nAChRα7 downregulation. Our mouse model will help clarify the association between type 2 diabetes mellitus and AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Colinérgicos , Cognição , Modelos Animais de Doenças
13.
Sci Transl Med ; 15(713): eabo6889, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37703352

RESUMO

Tau pathogenesis is a hallmark of many neurodegenerative diseases, including Alzheimer's disease (AD). Although the events leading to initial tau misfolding and subsequent tau spreading in patient brains are largely unknown, traumatic brain injury (TBI) may be a risk factor for tau-mediated neurodegeneration. Using a repetitive TBI (rTBI) paradigm, we report that rTBI induced somatic accumulation of phosphorylated and misfolded tau, as well as neurodegeneration across multiple brain areas in 7-month-old tau transgenic PS19 mice but not wild-type (WT) mice. rTBI accelerated somatic tau pathology in younger PS19 mice and WT mice only after inoculation with tau preformed fibrils and AD brain-derived pathological tau (AD-tau), respectively, suggesting that tau seeds are needed for rTBI-induced somatic tau pathology. rTBI further disrupted axonal microtubules and induced punctate tau and TAR DNA binding protein 43 (TDP-43) pathology in the optic tracts of WT mice. These changes in the optic tract were associated with a decline of visual function. Treatment with a brain-penetrant microtubule-stabilizing molecule reduced rTBI-induced tau, TDP-43 pathogenesis, and neurodegeneration in the optic tract as well as visual dysfunction. Treatment with the microtubule stabilizer also alleviated rTBI-induced tau pathology in the cortices of AD-tau-inoculated WT mice. These results indicate that rTBI facilitates abnormal microtubule organization, pathological tau formation, and neurodegeneration and suggest microtubule stabilization as a potential therapeutic avenue for TBI-induced neurodegeneration.


Assuntos
Doença de Alzheimer , Lesões Encefálicas Traumáticas , Animais , Camundongos , Microtúbulos , Proteínas de Ligação a DNA , Encéfalo , Modelos Animais de Doenças , Excipientes , Camundongos Transgênicos
14.
Nat Commun ; 14(1): 5247, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640701

RESUMO

Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.


Assuntos
Microglia , Doenças Neurodegenerativas , Animais , Camundongos , Doenças Neurodegenerativas/genética , Macrófagos , Células Mieloides , Deriva Genética
15.
Cell Rep Methods ; 3(7): 100532, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37533650

RESUMO

Automated home-cage monitoring systems present a valuable tool for comprehensive phenotyping of natural behaviors. However, current systems often involve complex training routines, water or food restriction, and probe a limited range of behaviors. Here, we present a fully automated home-cage monitoring system for cognitive and behavioral phenotyping in mice. The system incorporates T-maze alternation, novel object recognition, and object-in-place recognition tests combined with monitoring of locomotion, drinking, and quiescence patterns, all carried out over long periods. Mice learn the tasks rapidly without any need for water or food restrictions. Behavioral characterization employs a deep convolutional neural network image analysis. We show that combined statistical properties of multiple behaviors can be used to discriminate between mice with hippocampal, medial entorhinal, and sham lesions and predict the genotype of an Alzheimer's disease mouse model with high accuracy. This technology may enable large-scale behavioral screening for genes and neural circuits underlying spatial memory and other cognitive processes.


Assuntos
Doença de Alzheimer , Cognição , Camundongos , Animais , Hipocampo , Doença de Alzheimer/genética , Computadores , Comportamento Animal
16.
Front Aging Neurosci ; 15: 1211067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455930

RESUMO

Background: Neurodegenerative processes in Alzheimer's disease (AD) are associated with excitotoxicity mediated by the N-methyl-D-aspartate receptor (NMDAR). D-Serine is an endogenous co-agonist necessary for NMDAR-mediated excitotoxicity. In the mammalian brain, it is produced by serine racemase (SRR) from L-serine, suggesting that dysregulation of L-serine, D-serine, or SRR may contribute to AD pathogenesis. Objective and methods: We examined the contributions of D-serine to AD pathology in the AppNL-G-F/NL-G-F gene knock-in (APPKI) mouse model of AD. We first examined brain SRR expression levels and neuropathology in APPKI mice and then assessed the effects of long-term D-serine supplementation in drinking water on neurodegeneration. To further confirm the involvement of endogenous D-serine in AD progression, we generated Srr gene-deleted APPKI (APPKI-SRRKO) mice. Finally, to examine the levels of brain amino acids, we conducted liquid chromatography-tandem mass spectrometry. Results: Expression of SRR was markedly reduced in the retrosplenial cortex (RSC) of APPKI mice at 12 months of age compared with age-matched wild-type mice. Neuronal density was decreased in the hippocampal CA1 region but not altered significantly in the RSC. D-Serine supplementation exacerbated neuronal loss in the hippocampal CA1 of APPKI mice, while APPKI-SRRKO mice exhibited attenuated astrogliosis and reduced neuronal death in the hippocampal CA1 compared with APPKI mice. Furthermore, APPKI mice demonstrated marked abnormalities in the cortical amino acid levels that were partially reversed in APPKI-SRRKO mice. Conclusion: These findings suggest that D-serine participates in the regional neurodegenerative process in the hippocampal CA1 during the amyloid pathology of AD and that reducing brain D-serine can partially attenuate neuronal loss and reactive astrogliosis. Therefore, regulating SRR could be an effective strategy to mitigate NMDAR-dependent neurodegeneration during AD progression.

17.
Neurobiol Dis ; 184: 106219, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422091

RESUMO

Accumulating evidence indicates that early adverse life experiences may be involved in the pathogenesis of Alzheimer's disease (AD). Prenatal stress (PS) can affect brain maturation and neuroimmune and metabolic interactions, leading to age-dependent cognitive deficits in offspring. However, a multi-faceted cause-and-effect impact of PS on the development of cognitive deficits in the process of physiological ageing and in the APPNL-F/NL-F mouse model of Alzheimer's disease has not yet been evaluated. We have identified age-dependent cognitive learning and memory deficits using male C57BL/6 J (wild type, WT) and the knock-in APPNL-F/NL-F (KI) aged 12, 15, and 18 months. An increase in the Aß42/Aß40 ratio and mouse ApoE levels in the hippocampus and frontal cortex preceded the onset of cognitive deficits in the KI mice. Moreover, dysfunction in insulin signaling, including increased IRS-1 serine phosphorylation in both brain areas and the tyrosine phosphorylation deficit in the frontal cortex, suggested age-dependent insulin/IGF-1 resistance. Resistance was reflected by disturbances in mTOR or ERK1/2 kinase phosphorylation and excessive pro-inflammatory (TNF-α, IL-6, and IL-23) status in the KI mice. Importantly, our study has provided insights into the higher vulnerability to PS-induced exacerbation of age-dependent cognitive deficits and biochemical dysfunction in KI mice than in WT animals. We anticipate our study will lead to future investigation of a multi-faceted cause-and-effect relationship between stress during neurodevelopment and the onset of AD pathology, distinguishing it from changes in the course of dementia during normal ageing.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Feminino , Gravidez , Masculino , Camundongos , Animais , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Insulina , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
18.
Res Sq ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292629

RESUMO

The study for the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular ß-amyloid (Aß) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. We now report on a double transgenic APPNL-G-F MAPTP301S mouse that at 6 months of age exhibits robust Aß plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of Aß pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. However, MAPT pathology neither changed levels of amyloid precursor protein nor potentiated Aß accumulation. The APPNL-G-F/MAPTP301S mouse model also showed strong accumulation of N6-methyladenosine (m6A), which was recently shown to be elevated in the AD brain. M6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m6A from mRNA, respectively. Thus, the APPNL-G-F/MAPTP301S mouse recapitulates many features of AD pathology beginning at 6 months of aging.

20.
Neurobiol Dis ; 182: 106151, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37172910

RESUMO

In the early stages of Alzheimer's disease (AD), the accumulation of the peptide amyloid-ß (Aß) damages synapses and disrupts neuronal activity, leading to the disruption of neuronal oscillations associated with cognition. This is thought to be largely due to impairments in CNS synaptic inhibition, particularly via parvalbumin (PV)-expressing interneurons that are essential for generating several key oscillations. Research in this field has largely been conducted in mouse models that over-express humanised, mutated forms of AD-associated genes that produce exaggerated pathology. This has prompted the development and use of knock-in mouse lines that express these genes at an endogenous level, such as the AppNL-G-F/NL-G-F mouse model used in the present study. These mice appear to model the early stages of Aß-induced network impairments, yet an in-depth characterisation of these impairments in currently lacking. Therefore, using 16 month-old AppNL-G-F/NL-G-F mice, we analysed neuronal oscillations found in the hippocampus and medial prefrontal cortex (mPFC) during awake behaviour, rapid eye movement (REM) and non-REM (NREM) sleep to assess the extent of network dysfunction. No alterations to gamma oscillations were found to occur in the hippocampus or mPFC during either awake behaviour, REM or NREM sleep. However, during NREM sleep an increase in the power of mPFC spindles and decrease in the power of hippocampal sharp-wave ripples was identified. The latter was accompanied by an increase in the synchronisation of PV-expressing interneuron activity, as measured using two-photon Ca2+ imaging, as well as a decrease in PV-expressing interneuron density. Furthermore, although changes were detected in local network function of mPFC and hippocampus, long-range communication between these regions appeared intact. Altogether, our results suggest that these NREM sleep-specific impairments represent the early stages of circuit breakdown in response to amyloidopathy.


Assuntos
Doença de Alzheimer , Interneurônios , Sono , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Interneurônios/metabolismo , Camundongos Transgênicos , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...